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Abstract
The force on a small sphere with a plasma model dielectric function and in
the presence of a perfectly reflecting plane is considered. The contribution of
both the vacuum modes of the quantized electromagnetic field and of plasmon
modes in the sphere are discussed. In the case that the plasmon modes are in
their ground state, quasi-oscillatory terms from the vacuum and plasmon parts
cancel one another, leading a monotonic attractive force. If the plasmon modes
are not in the ground state, the net force is quasi-oscillatory. In both cases, the
sphere behaves in the same way as does an atom in either its ground state or an
excited state.

PACS number: 12.20.−m

1. Introduction

As is well known, Casimir and Polder [1] calculated the interaction energy between an atom
in its ground state and a perfectly reflecting plate and obtained the result

V = − 1

4πz3

∫ ∞

0
dξ α(iξ)(2z2ξ 2 + 2zξ + 1) e−2zξ , (1)

where z is the distance between the atom and the plate and α(iξ) is the atomic polarizability
evaluated at imaginary frequency. In the limit of large z, this potential takes the simple form

V ∼ Va = −3α(0)

8πz4
, (2)

which can be interpreted as due to the interaction of the atom with the quantized
electromagnetic field. In particular, the asymptotic Casimir–Polder potential can be expressed
as

Va = −1

2
α(0)〈E2〉 = α(0)

4πz3

∫ ∞

0
dω[(2ω2z2 − 1) sin 2ωz + 2ωz cos 2ωz]. (3)
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Here, 〈E2〉 is the shift in the mean square of the quantized electric field due to the plate, and the
integral on ω is understood to be evaluated by use of a convergence factor. For example, insert
a factor of e−βω in the integrand and then take the limit β → 0 after evaluation of the integral.
The integrand is a function which is highly oscillatory, and the area under each oscillation
is much larger than the final result for the integral. Thus, if one could slightly modify the
frequency spectrum, which is the integrand in equation (3), both the magnitude and sign of the
result could be dramatically altered. The Casimir effect between parallel plates also exhibits
a quasi-oscillatory spectrum [2, 3], and the possible effects of its modification were discussed
in [4].

In a previous paper, [5], the force on a small dielectric sphere in the presence of a
perfectly reflecting plate was discussed. It was shown that the interaction of the sphere
with the quantized electromagnetic field produces a quasi-oscillatory force whose magnitude
can be much larger than the force associated with the asymptotic Casimir–Polder potential,
equation (2). This result suggests a modification of the frequency spectrum of vacuum
fluctuations. More recently, the model in [5] was extended to include finite reflectivity of the
wall and finite temperature effects [6]. However, Barton [7] has suggested that the results
in [5, 6] are incomplete in that they do not include a contribution from the quantum charge
fluctuations in the sphere, and that this effect will cancel the quasi-oscillatory terms when the
sphere is in its ground state. This contribution, also known as radiation reaction or the effect
of plasmonic modes, arises from the retarded self-interaction of quantum charge fluctuations
in the presence of the mirror.

As will be discussed below, Barton’s suggestion is correct; the quasi-oscillatory terms
cancel for the ground state, but not for other quantum states of the plasma in the sphere,
which is essentially a three-dimensional quantum harmonic oscillator. In this way, the sphere
behaves just as does an atom. An atom in its ground state has the attractive interaction found
by Casimir and Polder, equation (1), but an atom in an excited state has a quasi-oscillatory
interaction potential with the plate [8].

In section 2, the vacuum mode contribution found in [5] will be reviewed. The contribution
of the charge fluctuations will be computed in section 3, and the results will be discussed in
section 4.

2. Contribution of the quantized electromagnetic field

In this section, we will summarize the results of [5] concerning the force due to the vacuum
modes or the quantized electromagnetic field. If one has a polarizable particle with dynamic
polarizability α(ω) located at a distance z from a perfectly reflecting plane, the force on the
particle may be computed from the Maxwell stress tensor. The vacuum modes in the presence
of the plate consist of a linear combination of an incident and a reflected wave. Each of these
interacts with the particle and creates a radiated dipole field. The force on the particle arises
from cross terms between (1) the reflected wave and the dipole field induced by the incident
wave and (2) the incident wave and the dipole field induced by the reflected wave. After
integrating over all modes, one finds the net force to be

FV = − 1

4πz4

∫ ∞

0
dω α1(ω)[3 sin 2ωz − 6zω cos 2ωz − 6z2ω2 sin 2ωz + 4z3ω3 cos 2ωz].

(4)

Here, α1(ω) is the real part of α(ω). The appearance of the real part of the dynamic
polarizability is a crucial feature of this result for FV . Equation (4) is derived using a
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dipole approximation which requires the sphere to be small compared to both the distance to
the plane, z, and to the characteristic wavelengths associated with α1(ω).

Now consider a sphere of radius a composed of a uniform material with dielectric function
ε(ω). The complex polarizability is given by

α(ω) = a3 ε(ω) − 1

ε(ω) + 2
. (5)

We will take the dielectric function to be that of the Drude model,

ε(ω) = 1 − ω2
p

ω(ω + iγ )
, (6)

where ωp is the plasma frequency and γ is the damping parameter. From equations (5) and
(6), we find that the real part of the polarizability is given by

α1 = a3ω2
p

ω2
p − 3ω2

(
3ω2 − ω2

p

)2
+ 9ω2γ 2

. (7)

Note that although α(ω) has poles only in the lower half-ω plane, its real part α1(ω) has poles
in both the upper and lower half planes. In the context of this model, the sphere is required to
be small in the sense that a � z and

aωp � 1. (8)

We can evaluate the integral in equation (4) by rotating the contour of integration to the
imaginary ω-axis. However, in this process we will also acquire a contribution from the
residue of the pole of α1(ω) at ω = � + 1

2 iγ , where

� = 1
6

√
12ω2

p − 9γ 2. (9)

Here, we are primarily interested in the limit of small damping, so we will take the limit
γ → 0 after the integrals are evaluated. In this limit,

� = ωp√
3
. (10)

The force can be written as

FV = JV + PV , (11)

where JV is the net contribution from integrals along the imaginary axis and PV is that from
the pole. The explicit forms of these two contributions for γ = 0 are

JV = −a3ω2
p

4πz4

∫ ∞

0
dξ

(
3ξ 2 + ω2

p

)
(4z3ξ 3 + 6z2ξ 2 + 6zξ + 3)(

3ξ 2 + ω2
p

)2 e−2zξ , (12)

and

PV = − a3ω2
p

24�z4
[2�z(2�2z2 − 3) sin(2�z) + 3(2�2z2 − 1) cos(2�z)]. (13)

Here, the positive direction is taken to be away from the plate, so a positive value for the force
indicates repulsion.
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3. Contribution of the quantum charge fluctuations

In this section, we will calculate the average force on the sphere due to quantum fluctuations of
the charge density in the sphere. Here, we consider only the case where γ = 0, so the plasma
oscillations are undamped and have a resonate frequency at the pole of ε(ω), that is at ω = �

where � is given by equation (10). Classically, the plasma forms a three-dimensional harmonic
oscillator with a frequency �. When the electron gas is described quantum mechanically, the
plasma becomes a three-dimensional quantum harmonic oscillator.

First, let us consider a classical oscillating dipole in the presence of a perfectly reflecting
plate located at z = 0. Let the instantaneous dipole moment be given by

p(t) = p0 cos �t. (14)

The electromagnetic field radiated by this dipole is reflected by the plate and returns to exert
a reaction force on the dipole. Let E(t) and B(t) be the reflected electric and magnetic fields
at the location of the dipole. The resulting force on the dipole is given by

FP = pj∂j E + ṗ × B. (15)

(This form can be derived directly from the Lorentz force law and differs slightly from the
expression for the force used in [5], which was derived from the Maxwell stress tensor.
However, one can show that both expressions lead to the same time-averaged force.)

We are interested in the component of time-averaged force which is normal to the plate.
A lengthy but straightforward calculation leads to the result

FP = p2
0x + p2

0y

32z4
[(8�2z2 − 3) cos(2�z) + 2�z(4�2z2 − 3) sin(2�z)]

+
p2

0z

16z4
[(4�2z2 − 3) cos(2�z) − 6�z sin(2�z)]. (16)

Now we need to briefly summarize the quantum mechanical description of the plasma
in the sphere. Suppose that there are N free electrons in the sphere and that each electron is
displaced by u from its equilibrium position during the plasma oscillations. The Lagrangian
for the plasma may be written as

L = 1
2Nm(u̇2 − �2u2), (17)

where m is the electron mass. Thus, the system is equivalent to a single particle with mass Nm

in a three-dimensional harmonic potential with resonant frequency ω. The dipole moment of
the system can be expressed as

p = Neu, (18)

where e is the electron charge. When the system is quantized, the Cartesian components of u
can be expressed as

uj = 1√
2Nm�

(
aj + a

†
j

)
, (19)

where aj and a
†
j are the annihilation and creation operators, respectively, for quanta in

mode j .
We can make the link between the previous description of a classical oscillating dipole

and a dipole undergoing quantum fluctuations by identifying
〈
p2

j

〉
, the quantum expectation

value of p2
j , with the time average of the corresponding squared classical field. Thus, we can

set

p2
0j = 2

〈
p2

j

〉
. (20)
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If the oscillator is in its ground state, we have

〈
p2

x

〉
0 = 〈

p2
y

〉
0 = 〈

p2
z

〉
0 = 1

2NM�
= a3ω2

p

6�
, (21)

where we used the fact that

ω2
p = 4πNe2

V m
= 3Ne2

a3m
, (22)

where V is the volume of the sphere. Thus in the ground state, we find that FP = −PV .
The force due to the averaged charge fluctuations exactly cancels the quasi-oscillatory term
coming from the vacuum modes. The net force is then

F = JV + PV + FP = JV , (23)

which is always attractive.
The situation is quite different if the quantum oscillator is not in its ground state. In this

case, we can write the net force as

F = JV +
1

16z4

(〈
p2

x

〉 − 〈
p2

x

〉
0 +

〈
p2

y

〉 − 〈
p2

y

〉
0

)
[(8�2z2 − 3) cos(2�z)

+ 2�z(4�2z2 − 3) sin(2�z)] +
1

8z4

(〈
p2

z

〉 − 〈
p2

z

〉
0

)

× [(4�2z2 − 3) cos(2�z) − 6�z sin(2�z)]. (24)

Consider, for example, the case where the state of the oscillator contains one quantum in a
particular mode. For that mode, we will have

〈
p2

j

〉 = 2
〈
p2

j

〉
0, and F will have a quasi-oscillatory

part which is just minus the vacuum contribution. Note that equation (24) is equivalent to
Barton’s equation (4.1) [8].

A case of special interest is when the oscillator is in a coherent state of each mode. In this
case, we have

aj |ψ〉 = βj |ψ〉, (25)

where |ψ〉 is the quantum state of the oscillator and βj are three complex numbers. In this
case, the net force becomes

F = JV +
2
√

3a3ωp

48z4
{[(Re βx)

2 + (Re βy)
2[(8�2z2 − 3) cos(2�z)

+ 2�z(4�2z2 − 3) sin(2�z)] + 2(Re βz)
2

× [(4�2z2 − 3) cos(2�z) − 6�z sin(2�z)]}. (26)

Thus if the quantum state of the plasma is a coherent state with |βj | of order 1, then there is a
quasi-oscillatory force on the sphere which is of the same order of magnitude as the vacuum
contribution, FV .

4. Discussion and conclusions

We have seen that plasmonic contributions, due to quantum charge fluctuations, give a
significant contribution to the force on the sphere. When these modes are in their ground
state, they exactly cancel the quasi-oscillatory terms PV arising from the vacuum modes. In
this case, only the vacuum mode term JV which can be written as an integral over imaginary
frequency remains. Thus, if one had ignored both the plasmon mode contribution and the
residues of the poles of α1(ω), one would have inadvertently obtained the correct answer.
When the plasmon modes are not in the ground state, the net force is quasi-oscillatory.



6370 L H Ford

In the context of atomic systems, there is an extensive literature on the relative effects
of vacuum modes and quantum charge fluctuations, often called radiation reaction or self-
reaction. See, for example, [9, 10]. However, many of the treatments for atomic systems do
not make it clear whether the separation between vacuum and self-reaction effects is gauge
invariant. In the present model, it is obvious that the two effects are separately gauge invariant,
as all of the calculations involve field strengths rather than potentials. When calculations are
performed by doing second-order perturbation theory on a Hamiltonian, as in [1, 8], there is
no need to consider the effects separately, and the cancellation is automatic.

In the case of the Casimir effect between planar geometries, the role of plasmonic
contributions at short distances has long been recognized [11, 12]. More recently, Intravaia
and Lambrecht [13] have argued that they are significant at all separations.

It seems to be desirable to understand better the physical reason for the cancellation
between vacuum and plasmonic effects. It is clear that one way to upset the cancellation is
to excite the plasmon modes. However, it is less clear if this is the only way in more general
geometries.
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